Second Assignment Answers

Some exercises on linear transformations and matrices.

▷ Exercise 1. Let \(v_1, \ldots, v_n \) be a basis for a vector space \(V \) and let \(S \) and \(T \) be two linear operators on \(V \). If the matrices of \(S \) and \(T \) relative to this basis are respectively \(S_{ij} \) and \(T_{ij} \), then show that the matrix elements of the composed linear operator \(ST \) are given by \((ST)_{ij} = \sum_{k=1}^{n} S_{ik}T_{kj} \), and that the matrix elements of the sum operator \(S + T \) are given by \((S + T)_{ij} = S_{ij} + T_{ij} \).

Answer

By definition of \(S_{ij} \) and \(T_{ij} \) we have:
\[
Tv_j = \sum_{i=1}^{n} T_{ij}v_i
\]
and similarly
\[
Sv_j = \sum_{i=1}^{n} S_{ij}v_i.
\]
Since (by definition of the addition of linear operators)
\[
(S + T)(v_j) = S(v_j) + T(v_j),
\]
the formula for \((S + T)_{ij} \) is immediate. On the other hand the “product” \(ST \) is defined to be the composition of \(S \) and \(T \), so
\[
(ST)(v_j) = S(T(v_j)) = S(\sum_{i=1}^{n} T_{ij}v_i) = \sum_{i=1}^{n} T_{ij}S(v_i) = \sum_{i=1}^{n} T_{ij} \sum_{k=1}^{n} S_{ki}v_k = \sum_{k=1}^{n} (ST)_{kj}v_k.
\]

In what follows, \(\mathcal{P}^n \) denotes the space of polynomials functions \(a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \) of degree \(\leq n \). Clearly \(\mathcal{P}^n \) is a vector space of dimension \(n + 1 \) and \(1, x, x^2, \ldots, x^n \) is a basis for \(\mathcal{P}^n \) (called the standard basis).

▷ Exercise 2. Differentiation defines an operator \(D \) on \(\mathcal{P}^n \), and of course \(D^k \) denotes the \(k \)-th derivative operator.

a) What is the matrix of \(D \) in the standard basis?

Answer

Let’s denote the standard basis by \(v_0 = 1, v_1 = x, \ldots, v_n = x^n \). Then since
\[
Dv_k = kv_{k-1},
\]
the matrix \(D_{ij} \) of \(D \) is given by \(D_{ij} = j \) if \(i = j - 1 \) and \(D_{ij} = 0 \) otherwise. (Note that this says that the first or “row-index” must be one less than the second or “column index” for a matrix element to be non-zero.) So the non-zero entries are
\(D_{01} = 1, D_{12} = 2, \ldots, D_{n-1,n} = n \), i.e., the matrix has 1, 2, \ldots, \(n \) just above the diagonal and zero elsewhere.

b) What is the kernel of \(D^k \)?

Answer \(\mathcal{P}^{k-1} \)

c) What is the image of \(D^k \)?

Answer \(\mathcal{P}^{n-k} \)

▷ Exercise 3. Define an inner-product on \(\mathcal{P}^n \) by
\[
\langle P_1, P_2 \rangle = \int_{-1}^{1} P_1(x)P_2(x) \, dx,
\]
and note that the standard basis is not orthonormal (or even orthogonal). Let us define orthonormal polynomials \(L_k(x) \) by applying the Gram-Schmidt Algorithm to the standard basis. (The \(L_k \) are usually called the normalized Legendre Polynomials.) Compute \(L_0, L_1, \) and \(L_2 \).

Answer

\(L_0 = \sqrt{2} \), \(L_1 = \frac{\sqrt{6}}{2} x \), \(L_2 = \frac{\sqrt{10}}{2} (3x^2 - 1) \).